

pycerberus documentation

pycerberus is a library to check user data thoroughly so that you can protect
your application from malicious (or just garbled) input data.

	Remove stupid code which converts input values: After values are validated, you
can work with real Python types instead of strings - e.g. 42 instead of ‘42’,
convert database IDs to model objects transparently.

	Implement custom validation rules: Writing custom validators is
straightforward, everything is well documented and pycerberus only uses very
little Python magic.

	Focus on your value-adding application code: Save time by implementing every
input validation rule only once, but 100% right instead of implementing a
dozen different half-baked solutions.

	Ready for global business: i18n support (based on GNU gettext) is built in,
adding custom translations is easy.

	Tune it for your needs: You can implement custom behavior in your validators,
e.g. fetch translations from a database instead of using gettext or define
custom translations for built-in validators.

	Use it wherever you like: pycerberus is used in a SMTP server, trac
macros as well as web applications - there are no dependencies on a specific
context like web development.

Documentation

	Installation and Setup

	Background

	Philosophy and Design
	Rules are declared explicitly: Separating policy from mechanism

	Development Status

	Using Validators
	Validation Errors

	Configuring Validators

	Context

	Available validators

	Writing your own validators
	BaseValidator

	Validator

	Miscellaneous

	Putting all together - A simple validator

	Internationalization
	Get translated error messages

	Internal gettext details

	Translate your custom messages

	Override existing messages and translations

	Modify gettext options (locale dir, domain)

	Retrieve translations from a different source (e.g. database)

	Using Validation Schemas
	Declarative Schemas

	Schema Error Handling

	Validating multiple fields in a Schema

	Schema inheritance - build multi-page forms without duplication

	Parse Input with Schemas

	Support for Python 3

Getting Help

There is a mailing list [http://groups.google.com/group/pycerberus/] where you
ask for help or discuss new features

License

pycerberus is licensed under the MIT license. As there are no other dependencies
(besides Python itself), you can easily use pycerberus in proprietary as well
as GPL applications.

Installation and Setup

pycerberus is just a Python library which uses setuptools so it does not require
a special setup. It has no dependencies besides the standard Python library.
There are some optional packages which you can choose to install:

	Babel is the most convenient option to generate the gettext catalog files
so you can see localized error messages.

	I’m using nosetests (“nose”) to run all the automated tests.

pycerberus has been tested on Python 2.6-2.7 as well as Python 3.
To know more about Python 3 support (and its limitations), please read the
section Python 3 Support.

Background

In every software you must check carefully that untrusted user input data
matches your expectations. Unvalidated user input is a common source of security
flaws. However many checks are repetitive and validation logic tends to be
scattered all around the code. Because basic checks are duplicated, developers
forget to check also for uncommon edge cases. Eventually there is often also
some code to convert the input data (usually strings) to more convenient Python
data types like int or bool.

pycerberus is a library that tackles these common problems and allows
you to write tailored validators to perform additional checks. Furthermore the
library also has built-in support for less common (but important) use cases
like internationalization.

The library itself is heavily inspired by FormEncode [http://www.formencode.org]
by Ian Bicking. Therefore most of FormEncode’s design rationale [http://www.formencode.org/en/latest/Design.html]
is directly applicable to pycerberus. However several things about FormEncode
annoyed me so much that I decided to write my own library when I needed one for
my SMTP server project pymta [https://github.com/FelixSchwarz/pymta].

Philosophy and Design

Rules are declared explicitly: Separating policy from mechanism

pycerberus separates validation rules (“Validators”) from the objects they
validate against. It might be tempting to derive the validation rules from
restrictions you specified earlier (e.g. from a class which is mapped by an ORM
to a database). However that approach completely ignores that validation
typically depends on context: In an API you have typically a lot more freedom in
regard to allowed values compared to a public web interface where input needs to
conform to a lot more checks. In a system where you declare the validation
explicitly, this is possible. Also it is quite easy writing some code that
generates a bottom line of validation rules automatically based on your ORM
model and add additional restrictions depending on the context.

As pycerberus is completely context-agnostic (not being bundled with a specific
framework), you can use it in many different places (e.g. web applications with
different frameworks, server applications, check parameters in a library, …).

Further reading: FormEncode’s design rationale [http://www.formencode.org/en/latest/Design.html] -
most of the design ideas are also present in pycerberus.

Development Status

I’m using pycerberus currently (June 2019, version 0.6.99) in several projects
and the basic API (based on “rich results”) seems to be fine. One problem is
that I have a lot of code on top of the open source version which should
probably be open sourced as well (e.g. dependencies for formvalidators).

The code is a bit simple, does not have many validators but is pretty solid.
The API for single validators is basically complete, i18n support is built in
and there is decent documentation covering all important aspects. You can check
multiple values (e.g. a web form) easily using a validation Schema
(“compound validator”).

In the future ‘ll try to increase the number of built-in validators for
specific domains (e.g. localized numbers). Another interesting topic will be
integration into different frameworks like TurboGears [http://www.turbogears.org] and
trac [http://trac.edgewall.org].

However I have to say that I’m pretty satisfied with the current status so
adding more features to pycerberus won’t be my #1 priority in the next months.
The current API and functionality was well-suited even when
validating input parameters of a SMTP server [https://github.com/FelixSchwarz/pymta]
so I think most use cases should be actually covered.

Using Validators

In pycerberus “Validators” are used to specify validation rules which ensure
that the input matches your expectations. Every basic validator validates a
just single value (e.g. one specific input field in a web application). When
the validation was successful, the validated and converted value is returned.
If something is wrong with the data, an exception is raised:

from pycerberus.validators import IntegerValidator
IntegerValidator().process('42') # returns 42 as int

pycerberus puts conversion and validation together in one call because of two
main reasons:

	As a user you need to convert input data (usually strings) anyway into a more
sensible format (e.g. int). These lines of code are redundant because you
declared in the validator already what the value should be.

	During the validation process, it is very easy to do also the conversion. In
fact many validations are done just by trying to do a conversion and catch
all exceptions that were raised during that process.

Validation Errors

Every validation error will trigger an exception, usually an InvalidDataError.
This exception will contain a translated error message which can be presented to
the user, a key so you can identify the exact error programmatically and the
original, unmodified value:

from pycerberus.errors import InvalidDataError
from pycerberus.validators import IntegerValidator
try:
 IntegerValidator().process('foo')
except InvalidDataError, e:
 details = e.details()
 details.msg() # u'Please enter a number.'
 details.key() # 'invalid_number'
 details.value() # 'foo'
 details.context() # {}

Configuring Validators

You can configure the behavior of the validator when instantiating it. For
example, if you pass required=False to the constructor, most validators will
also accept None as a valid value:

IntegerValidator(required=True).process(None) # -> validation error
IntegerValidator(required=False).process(None) # None

Validators support different configuration options which are explained along the
validator description.

Context

All validators support an optional context argument (which defaults to an
emtpy dict). It is used to plug validators into your application and make
them aware of the overall system state: For example a validator must know which
locale it should use to translate an error message to the correct language
without relying on some global variables:

context = {'locale': 'de'}
validator = IntegerValidator()
validator.process('foo', context=context) # u'Bitte geben Sie eine Zahl ein.'

The context variable is especially useful when writing custom validators -
locale is the only context information that pycerberus itself cares about.

Available validators

pycerberus contains some basic validators already. You can use them as they are
or use them as a basis for more specialized validators. Below you find a list
of all included validators.

	
class pycerberus.validators.basic_numbers.IntegerValidator(self)

	Bases: pycerberus.api.Validator

	
convert(value, context)

	Convert the input value to a suitable Python instance which is
returned. If the input is invalid, raise an InvalidDataError.

	
is_empty(value, context)

	Decide if the value is considered an empty value.

	
keys()

	Return all keys defined by this specific validator class.

	
message_for_key(key, context)

	Return a message for a specific key. Implement this method if you
want to avoid calls to messages() which might be costly (otherwise
implementing this method is optional).

	
messages()

	Return all messages which are defined by this validator as a
key/message dictionary. Alternatively you can create a class-level
dictionary which contains these keys/messages.

You must declare all your messages here so that all keys are known
after this method was called.

Calling this method might be costly when you have a lot of messages and
returning them is expensive. You can reduce the overhead in some
situations by implementing message_for_key()

	
revert_conversion(value, context=None)

	Undo the conversion of process() and return a “string-like”
representation. This method is especially useful for widget libraries
like ToscaWigets so they can render Python data types in a human
readable way.
The returned value does not have to be an actual Python string as long
as it has a meaningful unicode() result. Generally the validator
should accept the return value in its ‘.process()’ method.

	
validate(value, context)

	Perform additional checks on the value which was processed
successfully before (otherwise this method is not called). Raise an
InvalidDataError if the input data is invalid.

You can implement only this method in your validator if you just want to
add additional restrictions without touching the actual conversion.

This method must not modify the converted_value.

	
class pycerberus.validators.domain.DomainNameValidator(self)

	Bases: pycerberus.validators.string.StringValidator

A validator to check if an domain name is syntactically correct.

	
keys()

	Return all keys defined by this specific validator class.

	
message_for_key(key, context)

	Return a message for a specific key. Implement this method if you
want to avoid calls to messages() which might be costly (otherwise
implementing this method is optional).

	
messages()

	Return all messages which are defined by this validator as a
key/message dictionary. Alternatively you can create a class-level
dictionary which contains these keys/messages.

You must declare all your messages here so that all keys are known
after this method was called.

Calling this method might be costly when you have a lot of messages and
returning them is expensive. You can reduce the overhead in some
situations by implementing message_for_key()

	
validate(value, context)

	Perform additional checks on the value which was processed
successfully before (otherwise this method is not called). Raise an
InvalidDataError if the input data is invalid.

You can implement only this method in your validator if you just want to
add additional restrictions without touching the actual conversion.

This method must not modify the converted_value.

	
class pycerberus.validators.email.EmailAddressValidator(self)

	Bases: pycerberus.validators.domain.DomainNameValidator

A validator to check if an email address is syntactically correct.

Please note that there is no clear definition of an ‘email address’. Some
parts are defined in consecutive RFCs, there is a notion of ‘string that is
accepted by a MTA’ and last but not least a fuzzy ‘general expectation’ what
an email address should be about.

Therefore this validator is currently extremly simple and does not handle
internationalized local parts/domains.

	For the future I envision some extensions here:

	
	support internationalized domain names (possibly also encode to/
decode from idna) if specified by flag

	More flexible structure if there must be a second-level domain

	Something that should not happen in this validator:

	
	Open SMTP connections to check if an account exists

	specify default domains if missing

These things can be implemented in derived validators

	
keys()

	Return all keys defined by this specific validator class.

	
message_for_key(key, context)

	Return a message for a specific key. Implement this method if you
want to avoid calls to messages() which might be costly (otherwise
implementing this method is optional).

	
messages()

	Return all messages which are defined by this validator as a
key/message dictionary. Alternatively you can create a class-level
dictionary which contains these keys/messages.

You must declare all your messages here so that all keys are known
after this method was called.

Calling this method might be costly when you have a lot of messages and
returning them is expensive. You can reduce the overhead in some
situations by implementing message_for_key()

	
validate(emailaddress, context)

	Perform additional checks on the value which was processed
successfully before (otherwise this method is not called). Raise an
InvalidDataError if the input data is invalid.

You can implement only this method in your validator if you just want to
add additional restrictions without touching the actual conversion.

This method must not modify the converted_value.

	
class pycerberus.validators.foreach.ForEach(self)

	Bases: pycerberus.api.Validator

Apply a validator to every item of an iterable (like map). Also you
can specify the allowed min/max number of items in that iterable.

	
convert(values, context)

	Convert the input value to a suitable Python instance which is
returned. If the input is invalid, raise an InvalidDataError.

	
handle_validator_result(converted_value, result, context, errors=None, nr_new_errors=None)

	

	
keys()

	Return all keys defined by this specific validator class.

	
message_for_key(key, context)

	Return a message for a specific key. Implement this method if you
want to avoid calls to messages() which might be costly (otherwise
implementing this method is optional).

	
messages()

	Return all messages which are defined by this validator as a
key/message dictionary. Alternatively you can create a class-level
dictionary which contains these keys/messages.

You must declare all your messages here so that all keys are known
after this method was called.

Calling this method might be costly when you have a lot of messages and
returning them is expensive. You can reduce the overhead in some
situations by implementing message_for_key()

	
new_result(initial_value)

	

	
class pycerberus.validators.string.StringValidator(self)

	Bases: pycerberus.api.Validator

	
convert(value, context)

	Convert the input value to a suitable Python instance which is
returned. If the input is invalid, raise an InvalidDataError.

	
is_empty(value, context)

	Decide if the value is considered an empty value.

	
keys()

	Return all keys defined by this specific validator class.

	
message_for_key(key, context)

	Return a message for a specific key. Implement this method if you
want to avoid calls to messages() which might be costly (otherwise
implementing this method is optional).

	
messages()

	Return all messages which are defined by this validator as a
key/message dictionary. Alternatively you can create a class-level
dictionary which contains these keys/messages.

You must declare all your messages here so that all keys are known
after this method was called.

Calling this method might be costly when you have a lot of messages and
returning them is expensive. You can reduce the overhead in some
situations by implementing message_for_key()

	
validate(value, context)

	Perform additional checks on the value which was processed
successfully before (otherwise this method is not called). Raise an
InvalidDataError if the input data is invalid.

You can implement only this method in your validator if you just want to
add additional restrictions without touching the actual conversion.

This method must not modify the converted_value.

Writing your own validators

After all, using only built-in validators won’t help you much: You’ll need
custom validation rules which means that you need to write your own validators.

pycerberus comes with two classes that can serve as a good base when you start
writing a custom validator: The BaseValidator only provides the absolutely
required set of API so you have maximum freedom. The Validator class itself
is inherited from the BaseValidator and defines a more sophisticated API
and i18n support. Usually you should use the Validator class.

BaseValidator

	
class pycerberus.api.BaseValidator(self)

	The BaseValidator implements only the minimally required methods.
Therefore it does not put many constraints on you. Most users probably want
to use the Validator class which already implements some commonly used
features.

You can pass messages a dict of messages during instantiation to
overwrite messages specified in the validator without the need to create
a subclass.

	
copy()

	Return a copy of this instance.

	
keys()

	Return all keys defined by this specific validator class.

	
message_for_key(key, context)

	Return a message for a specific key. Implement this method if you
want to avoid calls to messages() which might be costly (otherwise
implementing this method is optional).

	
messages()

	Return all messages which are defined by this validator as a
key/message dictionary. Alternatively you can create a class-level
dictionary which contains these keys/messages.

You must declare all your messages here so that all keys are known
after this method was called.

Calling this method might be costly when you have a lot of messages and
returning them is expensive. You can reduce the overhead in some
situations by implementing message_for_key()

	
process(value, context=None)

	This is the method to validate your input. The validator returns a
(Python) representation of the given input value.

In case of errors a InvalidDataError is thrown.

	
raise_error(key, value, context, errorclass=<class 'pycerberus.errors.InvalidDataError'>, **values)

	Raise an InvalidDataError for the given key.

	
revert_conversion(value, context=None)

	Undo the conversion of process() and return a “string-like”
representation. This method is especially useful for widget libraries
like ToscaWigets so they can render Python data types in a human
readable way.
The returned value does not have to be an actual Python string as long
as it has a meaningful unicode() result. Generally the validator
should accept the return value in its ‘.process()’ method.

Validator

	
class pycerberus.api.Validator(self)

	The Validator is the base class of most validators and implements
some commonly used features like required values (raise exception if no
value was provided) or default values in case no value is given.

This validator splits conversion and validation into two separate steps:
When a value is process()``ed, the validator first calls ``convert()
which performs some checks on the value and eventually returns the converted
value. Only if the value was converted correctly, the validate()
function can do additional checks on the converted value and possibly raise
an Exception in case of errors. If you only want to do additional checks
(but no conversion) in your validator, you can implement validate() and
simply assume that you get the correct Python type (e.g. int).

Of course if you can also raise a ValidationError inside of convert() -
often errors can only be detected during the conversion process.

By default, a validator will raise an InvalidDataError if no value was
given (unless you set a default value). If required is False, the
default is None. All exceptions thrown by validators must be derived from
ValidationError. Exceptions caused by invalid user input should use
InvalidDataError or one of the subclasses.

If strip is True (default is False) and the input value has a strip()
method, the input will be stripped before it is tested for empty values and
passed to the convert()/validate() methods.

In order to prevent programmer errors, an exception will be raised if
you set required to True but provide a default value as well.

	
convert(value, context)

	Convert the input value to a suitable Python instance which is
returned. If the input is invalid, raise an InvalidDataError.

	
empty_value(context)

	Return the ‘empty’ value for this validator (usually None).

	
is_empty(value, context)

	Decide if the value is considered an empty value.

	
messages()

	Return all messages which are defined by this validator as a
key/message dictionary. Alternatively you can create a class-level
dictionary which contains these keys/messages.

You must declare all your messages here so that all keys are known
after this method was called.

Calling this method might be costly when you have a lot of messages and
returning them is expensive. You can reduce the overhead in some
situations by implementing message_for_key()

	
process(value, context=None)

	This is the method to validate your input. The validator returns a
(Python) representation of the given input value.

In case of errors a InvalidDataError is thrown.

	
raise_error(key, value, context, errorclass=<class 'pycerberus.errors.InvalidDataError'>, error_dict=None, error_list=(), **values)

	Raise an InvalidDataError for the given key.

	
validate(converted_value, context)

	Perform additional checks on the value which was processed
successfully before (otherwise this method is not called). Raise an
InvalidDataError if the input data is invalid.

You can implement only this method in your validator if you just want to
add additional restrictions without touching the actual conversion.

This method must not modify the converted_value.

Miscellaneous

pycerberus uses a deprecated library called simple_super so you can just say
self.super() in your custom validator classes. This will
call the super implementation with just the same parameters as your method was
called.

Validators need to be thread-safe as one instance might be used several times.
Therefore you must not add additional attributes to your validator instance
after you called Validator’s constructor. To prevent unexperienced programmers
falling in that trap, a ‘’Validator’’ will raise an exception if you try to set
an attribute. If you don’t like this behavior and you really know what you are
doing, you can issue validator.set_internal_state_freeze(False) to disable
that protection.

Putting all together - A simple validator

Now it’s time to put it all together. This validator demonstrates most of the
API as explained so far:

class UnicodeValidator(Validator):

 def __init__(self, max=None):
 self.super()
 self._max_length = max

 def messages(self):
 return {
 'invalid_type': _(u'Validator got unexpected input (expected string, got %(classname)s).'),
 'too_long': _(u'Please enter at maximum %(max_length) characters.')
 }
 # Alternatively you could also declare a class-level variable:
 # messages = {...}

 def convert(self, value, context):
 try:
 return unicode(value, 'UTF-8')
 except Exception:
 classname = value.__class__.__name__
 self.raise_error('invalid_type', value, context, classname=classname)

 def validate(self, converted_value, context):
 if self._max_length is None:
 return
 if len(converted_value) > self._max_length:
 self.raise_error('too_long', converted_value, context, max_length=self._max_length)

The validator will convert all input to unicode strings (using the UTF-8
encoding). It also checks for a maximum length of the string.

You can see that all the conversion is done in convert() while additional
validation is encapsulated in validate(). This can help you keeping your
methods small.

In case there is an error the error() method will raise an InvalidDataError.
You select the error message to show by passing a string constant key which
identifies the message. The key can be used later to adapt the user interface
without relying the message itself (e.g. show an additional help box in the user
interface if the user typed in the wrong password).

The error messages are declared in the messages(). You’ll notice that the
message strings can also contain variable parts. You can use these variable
parts to give the user some additional hints about what was wrong with the data.

Internationalization

Modern applications must be able to handle different languages.
Internationalization (i18n) in pycerberus refers to validating
locale-dependent input data (e.g. different decimal separator characters) as
well as validation errors in different languages. The former aspect is not yet
covered by default but you should be able to write custom validators easily.

All messages from validators included in pycerberus can be translated in
different languages using the standard gettext library. The language of
validation error messages will be chosen depending on the locale which is given
in the state dictionary,

i18n support in pycerberus is a bit broader than just translating
existing error messages. i18n becomes interesting when you write your own
validators (based on the ones that come with pycerberus) and your translations
need to play along with the built-in ones:

	Translate only the messages you defined, keep the existing pycerberus translations.

	If you don’t like the existing pycerberus translations, you can define your
own without even changing a single line or file in pycerberus.

	Specify additional translation options per validator class (e.g. a different
gettext domain or a different directory where your translations are stored).

	Even though pycerberus uses the well-known gettext mechanism to retrieve
translations, you can use any other source as well (e.g. a database or a XML
file).

All i18n support in pycerberus aims to provide custom validators with a
nice, simple-to-use API while maintaining the flexibility that serious
applications need.

Get translated error messages

If you want to get translated error messages from a validator, you set the
correct ‘’context’‘. formencode looks for a key named ‘locale’ in the context
dictionary:

validator = IntegerValidator()
validator.process('foo', context={'locale': 'en'}) # u'Please enter a number.'
validator.process('foo', context={'locale': 'de'}) # u'Bitte geben Sie eine Zahl ein.'

Internal gettext details

Usually you don’t have to know much about how pycerberus uses gettext internally.
Just for completeness: The default domain is ‘pycerberus’. By default
translations (.mo files) are loaded from pycerberus.locales, with a fall back
to the system-wide locale dir ‘’/usr/share/locale’‘.

Translate your custom messages

To translate messages from a custom validator, you need to declare them in
the messages() method and mark the message strings as translatable:

from pycerberus.api import Validator
from pycerberus.i18n import _

class MyValidator(Validator):
 def messages(self):
 return {
 'foo': _('A message.'),
 'bar': _('Another message.'),
 }

 # your validation logic ...

Afterwards you just have to start the usual gettext process. I always use Babel [http://babel.edgewall.org] because it provides the very convenient pybabel tool which simplifies the workflow a lot:

	Collect the translatable strings in a po template (.pot) file, e.g. pybabel extract . --output=mymessages.pot

	Create the initial po file for your new locale (only needed once): pybabel init --domain=pycerberus --input-file=mymessages.pot --locale=<locale ID> --output-dir=locales/

	After every change to a translatable string in your source code, you need to recreate the pot file (see first step) and update the po file for your locale: pybabel update --domain=pycerberus --input-file=mymessages.pot --output-dir=locales/

	Translate the messages for every locale.

	Compile the final po file into a mo file, e.g. pybabel compile --domain=pycerberus --directory=locales/

Override existing messages and translations

Assume your custom validator is a subclass of a built-in validator but you
don’t like the built-in translation. Of course you can replace pycerberus’ mo
files directly. However there is also another way where you don’t have to change
pycerberus itself:

class CustomValidatorThatOverridesTranslations(Validator):

 def messages(self):
 return {'empty': _('My custom message if the value is empty'),
 'custom': _('A custom message')}

 # ...

This validator will use a different message for the ‘empty’ error and you can
define custom translations for this key in your own .po files.

Modify gettext options (locale dir, domain)

The gettext library is configurable, e.g. in which directory your .mo files
are located and which domain (.mo filename) should be used. In pycerberus this
is configurable by validator:

class ValidatorWithCustomGettextOptions(Validator):

 def messages(self):
 return {'custom': _('A custom message')}

 def translation_parameters(self, context):
 return {'domain': 'myapp', 'localedir': '/home/foo/locale'}

 # ...

These translation parameters are passed directly to the ‘’gettext’’ call so you
can read about the available options in the gettext documentation [http://docs.python.org/library/gettext.html].
Your parameter will be applied for all messages which were declared in your
validator class (but not in others). So you can modify the parameters for your
own validator but keep all the existing parameters (and translations) for
built-in validators.

Retrieve translations from a different source (e.g. database)

Sometimes you don’t want to use gettext. For instance you could store translations
in a relational database so that your users can update the messages themselves
without fiddling with gettext tools:

class ValidatorWithNonGettextTranslation(FrameworkValidator):

 def messages(self):
 return {'custom': _('A custom message')}

 def translate_message(self, key, native_message, translation_parameters, context):
 # fetch the translation for 'native_message' from somewhere
 translated_message = get_translation_from_db(native_message)
 return translated_message

You can use this mechanism to plug in arbitrary translation systems into
gettext. Your translation mechanism is (again) only applied to keys which were
defined by your specific validator class. If you want to use your translation
system also for keys which were defined by built-in validators, you need to
re-define these keys in your class as shown in the previous section.

Using Validation Schemas

Especially in web development you often get multiple values from a form and you
want to validate all these values easily. This is where “compound validators”
aka “schemas” come into play. A schema contains multiple validators, one validator
for every field. There’s nothing special about these validators - they are just
validators like the ones I explained in the previous section. Every field
validator only cares about a single value and does not see the rest of the
values. Also a schema is technically just a special validator.

You can define a schema like this:

from pycerberus.schema import SchemaValidator
from pycerberus.validators import IntegerValidator, StringValidator

schema = SchemaValidator()
schema.add('id', IntegerValidator())
schema.add('name', StringValidator())

Afterwards the schema behaves most like all basic validators - instead of a
single input value they just get a dictionary:

validated_values = schema.process({'id': '42', 'name': 'Foo Bar'})

If you declared a validator for a key which is not present in the input dict,
the validator will get its ‘empty’ value instead:

id_required = SchemaValidator()
id_required.add('id', IntegerValidator(required=False))
id_required.process({}) # -> {'id': None}

id_optional = SchemaValidator()
id_optional.add('id', IntegerValidator(required=True))
id_optional.process({}) # raises an Exception because id None is not acceptable

Do not mix up the ‘default’ value with the ‘empty’ value:

IntegerValidator(default=42)

The ‘default’ value in this case is 42 but the ‘empty’ value is still None.

Please note that Schemas are ‘secure by default’ which means that the returned
dictionary contains only values that were validated. If you did not add a
validator for a specific key, this key won’t be included in the result.

If you need to ensure that no values with unknown keys are passed to the schema
(even if those would be just dropped), you can specify this when instantiating
the schema: Schema(allow_additional_parameters=False). The schema will
raise an exception if it finds any unknown keys.

The equivalent “declarative schema” (see next section) is:

class MySchema(SchemaValidator):
 allow_additional_parameters=False
 # ...

Declarative Schemas

Schemas can be an important part in your application security. Also they define
some kind of interface (which parameters does your application expect). Besides
the algorithmic way to build a schema there is a ‘declarative’ way so that you
can review and audit your schemas easily:

class MySchema(SchemaValidator):
 id = IntegerValidator()
 name = StringValidator()

using it...
schema = MySchema()

It’s absolutely the same schema but the definition is way easier to read.

Schema Error Handling

All schema validators are executed even if one of the previous validators failed.
Because of that you can display the user all errors at once:

schema = SchemaValidator()
schema.add('id', IntegerValidator())
schema.add('name', StringValidator())
try:
 schema.process({'id': 'invalid', 'name': None})
except InvalidDataError, e:
 e.error_dict() # {'id': <id validation error>, 'name': <id validation error>}
 e.error_for('id') # id validation error

Validating multiple fields in a Schema

Sometimes you need to validate multiple fields in a schema - e.g. you need to
check in a ‘change password’ action that the password is entered the same twice.
Or you need to check that a certain value is higher than another value in the
form. That’s where formvalidators come into play.

formvalidators are validators like all other field validators but they get the
complete field dict as input, not a single item. Also formvalidators are run
after all field validators successfully validated the input - therefore you
have access to reasonably sane values, already converted to a handy Python data
type. Opposite to simple field validators, the validation process fails
immediately if one formvalidator fails.

You can add formvalidators to a form like this:

class NumbersMatch(Validator):
 def validate(self, fields, context):
 if fields['a'] != fields['b']:
 self.raise_error('no_match', fields, context=context)
schema.add_formvalidator(NumbersMatch)

Of course there is also a declarative way to use form validators:

class MySchema(SchemaValidator):
 # ...
 formvalidators = (NumbersMatch,)

Schema inheritance - build multi-page forms without duplication

Validation schemas are an important piece of information: On the one hand they
can serve as a kind of API specification (which parameters are accepted by your
application) and on the other hand they are important for security audits (which
constraints are put on your input values). Obviously this is something that you
want to get right - duplicating this information only increases the likelyhood
of bugs.

The issue becomes especially annoying when you have a web application with a
complex form (e.g. a new user registration process) that you want to split in
multiple steps on different pages so that your users won’t drop out immediately
when they see the huge form. It is good HTTP/ReST design practice to keep state
on the client side. Therefore you pass fields from previous pages in hidden
input fields to the next and for the final page it looks like there was one big
form. This also has the advantage that you can shuffle the fields on the
different pages without changing real logic.

With that approach your pretty much settled - however you need a separate
validation schema for every single page which is a huge duplication. With
pycerberus you can avoid that by using ‘’schema inheritance’‘:

class FirstPage(SchemaValidator):
 id = IntegerValidator()

 formvalidators = (SomeValidator(),)

class SecondPage(FirstPage):
 # this schema contains also 'id' validator
 name = StringValidator()

 # formvalidators are implicitely appended so actually this schema has
 # these formvalidators: (SomeValidator(), AnotherValidator(),)
 formvalidators = (AnotherValidator(),)

class FinalPage(SecondPage):
 # this schema contains also 'id' and 'name' validators
 age = IntegerValidator()

 # This page contains again both formvalidators

As you can see, every page adds some validators while keeping the old ones. This
eliminates the duplication problem described above,

What happens if SecondPage declares a different validator for ‘id’? In this case
it will just replace the ‘’IntegerValidator()’’ declared by ‘’FirstPage’‘!

Parse Input with Schemas

In the common “web form” use case you already get parameters mapped to keys.
That’s usually the job of your web framework. However sometimes it’s not that
easy: Before you can do input validation, you need to parse the user input from
a string and convert that into a dict.

This is where ‘’PositionalArgumentsParsingSchema()’’ might help you: This schema
takes a string and extracts several parameters from it. So you can use it to
transform "foo, 42" into dict(name="foo", value=42).

	
class pycerberus.schemas.PositionalArgumentsParsingSchema(self)

	This schema parses a string containing arguments within a specified order
and returns a dict where each of these parameters is mapped to a specific
key for easy retrieval.

You specify the order of parameters (and the keys) in the class-level
attribute parameter_order:

class ConfigListSchema(PositionalArgumentsParsingSchema):
 first_key = StringValidator()
 second_key = IntegerValidator()
 parameter_order = (first_key, second_key)

By default the items are separated by comma though you can override in the
method separator_pattern(). If there are more items than keys specified,
this schema will behave like any other schema (depending if you set the
class-level attribute allow_additional_parameters).

	
aggregate_values(parameter_names, arguments, context)

	This method can manipulate or aggregate parsed arguments. In this
class, it’s just a noop but sub classes can override this method to do
more interesting stuff.

	
keys()

	Return all keys defined by this specific validator class.

	
message_for_key(key, context)

	Return a message for a specific key. Implement this method if you
want to avoid calls to messages() which might be costly (otherwise
implementing this method is optional).

	
messages()

	Return all messages which are defined by this validator as a
key/message dictionary. Alternatively you can create a class-level
dictionary which contains these keys/messages.

You must declare all your messages here so that all keys are known
after this method was called.

Calling this method might be costly when you have a lot of messages and
returning them is expensive. You can reduce the overhead in some
situations by implementing message_for_key()

	
process(value, context=None)

	This is the method to validate your input. The validator returns a
(Python) representation of the given input value.

In case of errors a InvalidDataError is thrown.

This schema is used for example in pymta [https://github.com/FelixSchwarz/pymta].
to parse the SMTP command strings. Also I used it in my
OhlohWidgetsMacro [http://www.schwarz.eu/opensource/projects/ohloh_widgets_macro]:
Trac macros can get parameters but these are passed as a single string so the
schema takes care of separating these arguments.

Support for Python 3

pycerberus supports Python 3 out of the box (tested with Python 3.4+) as
well as Python 2.7. pycerberus 0.6 uses a unified source tree (pycerberus 0.5 relied on 2to3 and
some custom hacks).

As far as I am aware the Python 3 version of pycerberus behaves exactly like
the Python 2 version.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pycerberus	

 	
 	
 pycerberus.validators.basic_numbers	

 	
 	
 pycerberus.validators.domain	

 	
 	
 pycerberus.validators.email	

 	
 	
 pycerberus.validators.foreach	

 	
 	
 pycerberus.validators.string	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | M
 | N
 | P
 | R
 | S
 | V

A

 	
 	aggregate_values() (pycerberus.schemas.PositionalArgumentsParsingSchema method)

B

 	
 	BaseValidator (class in pycerberus.api)

C

 	
 	convert() (pycerberus.api.Validator method)

 	(pycerberus.validators.basic_numbers.IntegerValidator method)

 	(pycerberus.validators.foreach.ForEach method)

 	(pycerberus.validators.string.StringValidator method)

 	
 	copy() (pycerberus.api.BaseValidator method)

D

 	
 	DomainNameValidator (class in pycerberus.validators.domain)

E

 	
 	EmailAddressValidator (class in pycerberus.validators.email)

 	
 	empty_value() (pycerberus.api.Validator method)

F

 	
 	ForEach (class in pycerberus.validators.foreach)

H

 	
 	handle_validator_result() (pycerberus.validators.foreach.ForEach method)

I

 	
 	IntegerValidator (class in pycerberus.validators.basic_numbers)

 	is_empty() (pycerberus.api.Validator method)

 	(pycerberus.validators.basic_numbers.IntegerValidator method)

 	(pycerberus.validators.string.StringValidator method)

K

 	
 	keys() (pycerberus.api.BaseValidator method)

 	(pycerberus.schemas.PositionalArgumentsParsingSchema method)

 	(pycerberus.validators.basic_numbers.IntegerValidator method)

 	(pycerberus.validators.domain.DomainNameValidator method)

 	(pycerberus.validators.email.EmailAddressValidator method)

 	(pycerberus.validators.foreach.ForEach method)

 	(pycerberus.validators.string.StringValidator method)

M

 	
 	message_for_key() (pycerberus.api.BaseValidator method)

 	(pycerberus.schemas.PositionalArgumentsParsingSchema method)

 	(pycerberus.validators.basic_numbers.IntegerValidator method)

 	(pycerberus.validators.domain.DomainNameValidator method)

 	(pycerberus.validators.email.EmailAddressValidator method)

 	(pycerberus.validators.foreach.ForEach method)

 	(pycerberus.validators.string.StringValidator method)

 	
 	messages() (pycerberus.api.BaseValidator method)

 	(pycerberus.api.Validator method)

 	(pycerberus.schemas.PositionalArgumentsParsingSchema method)

 	(pycerberus.validators.basic_numbers.IntegerValidator method)

 	(pycerberus.validators.domain.DomainNameValidator method)

 	(pycerberus.validators.email.EmailAddressValidator method)

 	(pycerberus.validators.foreach.ForEach method)

 	(pycerberus.validators.string.StringValidator method)

N

 	
 	new_result() (pycerberus.validators.foreach.ForEach method)

P

 	
 	PositionalArgumentsParsingSchema (class in pycerberus.schemas)

 	process() (pycerberus.api.BaseValidator method)

 	(pycerberus.api.Validator method)

 	(pycerberus.schemas.PositionalArgumentsParsingSchema method)

 	
 	pycerberus.validators.basic_numbers (module)

 	pycerberus.validators.domain (module)

 	pycerberus.validators.email (module)

 	pycerberus.validators.foreach (module)

 	pycerberus.validators.string (module)

R

 	
 	raise_error() (pycerberus.api.BaseValidator method)

 	(pycerberus.api.Validator method)

 	
 	revert_conversion() (pycerberus.api.BaseValidator method)

 	(pycerberus.validators.basic_numbers.IntegerValidator method)

S

 	
 	StringValidator (class in pycerberus.validators.string)

V

 	
 	validate() (pycerberus.api.Validator method)

 	(pycerberus.validators.basic_numbers.IntegerValidator method)

 	(pycerberus.validators.domain.DomainNameValidator method)

 	(pycerberus.validators.email.EmailAddressValidator method)

 	(pycerberus.validators.string.StringValidator method)

 	
 	Validator (class in pycerberus.api)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 pycerberus documentation

 		
 Installation and Setup

 		
 Background

 		
 Philosophy and Design

 		
 Rules are declared explicitly: Separating policy from mechanism

 		
 Development Status

 		
 Using Validators

 		
 Validation Errors

 		
 Configuring Validators

 		
 Context

 		
 Available validators

 		
 Writing your own validators

 		
 BaseValidator

 		
 Validator

 		
 Miscellaneous

 		
 Putting all together - A simple validator

 		
 Internationalization

 		
 Get translated error messages

 		
 Internal gettext details

 		
 Translate your custom messages

 		
 Override existing messages and translations

 		
 Modify gettext options (locale dir, domain)

 		
 Retrieve translations from a different source (e.g. database)

 		
 Using Validation Schemas

 		
 Declarative Schemas

 		
 Schema Error Handling

 		
 Validating multiple fields in a Schema

 		
 Schema inheritance - build multi-page forms without duplication

 		
 Parse Input with Schemas

 		
 Support for Python 3

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

